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Abstract

We search for inclusive high ET diphoton events with large missing transverse

energy in p�p collisions at
p
s=1.8 TeV. Such events are expected from pair

production of charginos and neutralinos within the framework of the minimal

supersymmetric standard model with a light gravitino. No excess of events is

observed. In that model, and assuming gaugino mass uni�cation at the GUT

scale, we obtain a 95% CL exclusion region in the supersymmetry parameter

space and lower mass bounds of 150 GeV/c2 for the lightest chargino and

75 GeV/c2 for the lightest neutralino.
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Supersymmetric models with low energy gauge-mediated supersymmetry breaking, �rst

proposed by Fayet [1], have generated recent theoretical interest [2,3]. These models are

characterized by a supersymmetry breaking scale � as low as 100 TeV. Consequently the

gravitino ( ~G) is nearly massless and is naturally the lightest supersymmetric particle (LSP).

In contrast to these light-gravitino models, the supersymmetry breaking scale of gravity-

mediated models is � � 109 TeV, resulting in a massive gravitino which has no role in low

energy supersymmetry. In light-gravitino models, the lightest superpartner of a standard

model particle, assumed here and in most analyses to be the lightest neutralino (~�0
1), is the

next-to-lightest supersymmetric particle (NLSP). If ~�0
1 has a non-zero photino component,

it is unstable and decays into a photon plus a gravitino (~�0
1 !  ~G).

In this Letter, we present a direct search for supersymmetry with a light gravitino in

the framework of the minimal supersymmetric standard model (MSSM). In this framework

the gaugino-higgsino sector (excluding gluinos) is described by four parameters: M1, M2,

�, and tan �, where M1 and M2 are the U(1) and SU(2) gaugino mass parameters, � is
the higgsino mass parameter, and tan � is the ratio of the vacuum expectation values of
the two higgs doublets [4]. With the assumption of gaugino mass uni�cation at the GUT

scale, M1 =
5
3
M2 tan

2
�W , where �W is the weak mixing angle. There are four neutralinos

(~�0
i ; i = 1; 2; 3; 4) and two charginos (~��j ; j = 1; 2) whose masses and couplings are �xed

by M2, � and tan �. We assume tan� > 1 in this analysis.
We search for neutralino and chargino pair production in

p
s=1.8 TeV p�p collisions at the

Fermilab Tevatron. The ~�0
1 is assumed to be short-lived, decaying within the detector to  ~G

with a branching ratio of 100%. R-parity conservation is assumed so that supersymmetric
particles are pair produced and the LSP is stable and non{interacting. Thus pair production
of charginos and neutralinos yields  /ET events with high transverse energy (ET ) photons
and large missing transverse energy ( /ET ), with or without jets. The high ET photons and
large /ET provide a powerful tool for suppressing backgrounds.

Recently D� reported a search [5] for  /ET events based on supersymmetry models with

~�0
1 as the LSP. In this analysis, we present the �rst experimental study of p�p!  /ET +X

based on the MSSM with a light gravitino as the LSP. Using this model and more e�cient
photon identi�cation and event selection criteria than in Ref. [5], we set the strongest limits

to date in the supersymmetry parameter space, exceeding those from LEP experiments [3].
The data used in this analysis were collected with the D� detector during the 1992{1996

Tevatron run at
p
s=1.8 TeV and represent an integrated luminosity of 106:3� 5:6 pb�1. A

detailed description of the D� detector can be found in Ref. [6]. The trigger requires one elec-
tromagnetic (EM) cluster with transverse energy ET > 15 GeV, one jet with ET > 10 GeV,
and /ET> 14 GeV ( /ET> 10 GeV for about 10% of the data taken early in the Tevatron run).

The jets in the trigger include non-leading EM clusters. Photons are identi�ed through a

two-step process: the selection of isolated EM energy clusters and the rejection of electrons.
The EM clusters are selected from calorimeter energy clusters by requiring (i) at least 95%

of the energy to be deposited in the EM section of the calorimeter, (ii) the transverse and
longitudinal shower pro�les to be consistent with those expected for an EM shower, and

(iii) the energy in an annular isolation cone from radius 0.2 to 0.4 around the cluster in

�� � space to be less than 10% of the cluster energy, where � and � are the pseudorapidity
and azimuthal angle. Electrons are removed by rejecting EM clusters which have either

a reconstructed track or a large number of tracking chamber hits in a road between the
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calorimeter cluster and the event vertex. /ET is determined from the energy deposition in

the calorimeter for j�j < 4:5.

To be selected as  /ET candidates, events are �rst required to have two identi�ed pho-

tons, one with E
1
T > 20 GeV and the other with E

2
T > 12 GeV, each with pseudorapidity

j�j < 1:2 or 1:5 < j�j < 2:0. We denote the 28 events passing these photon requirements

as the  sample. We then require /ET> 25 GeV with at least one reconstructed vertex in

the event to ensure good measurement of /ET . No requirement on jets is made. Two events

satisfy all requirements.

The principal backgrounds are multijet, direct photon, W + , W + jets, Z ! ee, and

Z ! �� ! ee events from Standard Model processes with misidenti�ed photons and/or

mismeasured /ET . The background due to /ET mismeasurement is estimated using events

with two EM-like clusters which satisfy looser EM cluster requirements than those discussed

above, and for which at least one of the two fails the EM shower pro�le consistency require-

ment (ii) above. In addition, these events must pass the photon kinematic requirements.
These events, called the QCD sample, are similar to those of the  sample and are expected
to have similar /ET resolution. By normalizing the number of events with /ET < 20 GeV in

the QCD sample to that in the  sample, we obtain a background of 2:1 � 0:9 events due
to /ET mismeasurement for /ET > 25 GeV.

Other backgrounds are due to events with genuine /ET such as those from W+`' (where
`' can be a real or a fake photon), Z ! �� ! ee, and t�t ! ee + jets production. These
events would fake  /ET events if the electrons were misidenti�ed as photons. We estimate

their contribution using a sample of e`' events passing the kinematic requirements, including
that on /ET . Electrons are selected from the identi�ed EM clusters with matched tracks.
Taking into account the probability (0.0045) that an electron is misidenti�ed as a photon, we
estimate a background of 0:2�0:1 events. Adding the two background contributions together
yields 2:3� 0:9 events. The /ET distributions of the  sample and the background sample
are compared in Fig. 1. Also shown are the expected distributions from supersymmetry for

two representative points in the (�;M2) parameter space.
Chargino and neutralino pair production and decay are modeled using the spythia pro-

gram [7], a supersymmetric extension of the pythia 5.7 program [8]. Squarks and sleptons
are assumed to be heavy so that the decays of charginos and neutralinos to the lightest

neutralino (the NLSP) proceed through intermediate W and Z= exchanges, but our results

are not sensitive to this assumption. To explore the parameter space, we choose to work
in the (�;M2) plane while keeping tan � �xed. We generate ~�0

i ~�
0
j , ~�

0
i ~�

�
j and ~��i ~�

�
j events

for a large number of points in the (�;M2) parameter space. Table I shows the resulting
theoretical cross sections �th for several representative points, calculated using the CTEQ3L

parton distribution function [9]. To determine the signal e�ciencies, Monte Carlo events are

run through a geant [10] based D� detector simulation program, a trigger simulator, and
the same trigger requirements, reconstruction, and analysis as the data. The total signal
e�ciency � (including e�ciencies of the trigger, reconstruction, photon identi�cation, and

kinematic requirements) varies greatly, from � 0:01% to � 26%, depending largely on the

masses of ~��1 and ~�0
1 and their mass di�erence. For large masses such as those in Table I,

the total e�ciency � > 15%. The estimated systematic error on the total e�ciency is 0:06�.

With two events observed and 2:3 � 0:9 events expected from background, we observe

no excess of events. We compute 95% CL upper limits on the cross section � for the Monte
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FIG. 1. The /ET distributions of the  and background samples. The number of events with

/ET< 20 GeV in the background sample is normalized to that in the  sample. Also shown are

the expected distributions (multiplied by 10) from two representative points in the supersymmetry

parameter space, with tan� = 2.

Carlo sampled points in the (�;M2) plane using a Bayesian approach [11] with a at prior
distribution for the signal cross section. The calculation takes into account the errors on the

luminosity, the e�ciency, and the number of background events. Depending on the values
of the supersymmetry parameters, the 95% CL upper limits on the total cross section vary
widely from several hundred pb for light charginos/neutralinos to � � 0:18 pb for heavy
charginos/neutralinos. The upper limit �D quoted in Table I is for events satisfying the
kinematic cuts of this analysis at the generator level; comparison of � and �D indicates the

fraction of events yielding detectable particles for the various parameter points.
To derive bounds in the (�;M2) plane, the values of � and M2 are varied around the

sampled points until the theoretical cross sections �th exceed the upper limits �. The
interpolated bounds in the (�;M2) plane are shown in Fig. 2 for tan � = 1:05; 2; 100. The

regions below the lines are excluded by this analysis. The bounds depend on the value of

tan � slightly, becoming stronger in the � < 0 half-plane and weaker in the other half-plane

as tan � is increased.

Figure 3 compares the bounds in the (�;M2) plane for tan � = 2 with those estimated
from LEP data [3] within the gauge-mediated framework and assuming a 75 GeV/c2 selec-

tron for t-channel exchange. These bounds exclude the region of parameter space suggested

in Ref. [3] for the chargino interpretation of an event candidate shown by the CDF Col-

laboration [12]. Also shown are the contours of constant mass for m~��
1

= 150 GeV/c2 and

m~�0
1

= 75 GeV/c2. Since these are the largest masses for which the mass contours lie entirely

in the excluded region, we obtain 95% CL lower mass limits of 150 GeV/c2 for the lightest

chargino and 75 GeV/c2 for the lightest neutralino. This 75 GeV/c2 lower mass limit also

rules out a large part of the parameter space suggested for the selectron interpretation of the
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� M2 m
~�0
1

m
~�
�

1

�th E�ciencies (%) Limits (pb)

GeV GeV GeV/c2 (pb) � �D � �D
-160 300 143.9 167.8 0.12 26.0�1.4 36.4 0.18 0.13
-600 140 72.5 146.4 0.36 17.2�1.2 32.1 0.28 0.15
-800 165 84.7 170.0 0.20 15.1�1.1 26.4 0.32 0.18
200 300 118.1 160.2 0.15 21.3�1.3 31.9 0.23 0.15
400 190 89.4 166.4 0.19 20.1�1.3 32.5 0.24 0.15
800 170 83.2 161.6 0.25 19.6�1.3 33.4 0.25 0.14

TABLE I. Representative points in the (�;M2) plane for tan� = 2 with GEANT simulation.

These points are chosen to be near our 95% CL bounds, where the experimental 95% CL cross

section � equals the theoretical cross section �th. The e�ciency � is for observing the total cross

section �, while �D and �D are the e�ciency and cross section for observing the detectable events,

those which satisfy the kinematic cuts E
1
T > 20 GeV, E

2
T > 12 GeV, j�j < 1:2 or 1:5 < j�j < 2:0,

and /ET > 25 GeV at the generator level. The total e�ciency � = �D��K where �K is the e�ciency

of the kinematic cuts.

µ (GeV)

M
2 

(G
eV

)

Excluded

tanβ=1.05

tanβ=2

tanβ=100

0

50

100

150

200

250

300

350

400

-750 -500 -250 0 250 500 750

FIG. 2. 95% CL bounds in the (�;M2) plane for tan� = 2 (solid line), tan � = 1:05 (dotted

line), and tan� = 100 (dashed line).
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FIG. 3. Bounds in the (�;M2) plane for tan � = 2. The region below the two solid lines is

excluded at 95% CL. Also shown are the bounds estimated in Ref. [3] from LEP data (dotted line)

and the contours of constant m~��
1

= 150 GeV/c2 (dashed line) and m~�0
1

= 75 GeV/c2 (dot-dashed

line). The hatched areas are suggested in Ref. [3] for the chargino interpretation of the CDF event

candidate in the model.

CDF event candidate in the model, as discussed in Ref. [3]. These mass limits are insensitive
to the choice of tan �, varying less than 2 GeV/c2 over the range 1:05 < tan � < 100, as
long as our assumption that ~�0

1 is the NLSP is satis�ed.

Most of the theoretical cross section for the gauge-mediated  /ET process is due to ~��1 ~�
�
1

and ~��1 ~�
0
2 production. We can thus place limits on these individual leading processes, as

was also done for gravity-mediated models using trilepton signatures [13]. For the large part
of the parameter space with j�j > M2, the relation m~��

1

� m~�0
2

� 2 � m~�0
1

holds, so we

can express our cross section limits simply in terms of m~��
1

. Figure 4 shows the 95% CL
upper limits for both processes, together with the gauge-mediated theoretical predictions

for tan � = 2 and � = �500 GeV. The experimental limits are insensitive to the choice
of tan� and � while the theoretical cross section varies by about 10%. Our data rule out
chargino masses below � 137 GeV/c2 in the gauge-mediated framework, assuming j�j > M2.

This limit, though weaker than the 150 GeV/c2 limit determined above from all processes

contributing to  /ET �nal states, is useful for comparison with semi-exclusive calculations
of gaugino production.

In summary, we have searched for inclusive high ET diphoton events with large missing
transverse energy. Such events are predicted in supersymmetric models with low energy

gauge-mediated supersymmetry breaking. No excess of events is found. The null result is

interpreted in the minimal supersymmetric standard model with a light gravitino. In that
model, and with the assumption of gaugino mass uni�cation at the GUT scale, we obtain

95% CL lower mass limits of 150 GeV/c2 for the lightest chargino and 75 GeV/c2 for the
lightest neutralino.
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